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RIEMANNIAN S-MANIFOLDS

GR. TSAGAS & A. LEDGER

1. Let M be an n-dimensional connected Riemannian manifold, and I(M)
the group of isometries of M. If there is a map s: M — I(M) such that for
every x € M the image s(x) = s, is an isometry of M having x as an isolated
fixed point, then the isometry s, is called Riemannian symmetry at x or simply
symmetry at x. The Riemannian manifold M with this property is called
Riemannijan s-manifold. If there is a positive integer k such that s* = id., vx

e M, then M is called a Riemannian s-manifold of order k or simply k-sym-
metric Riemannian space. The usual Riemannian symmetric spaces are
Riemannian s-manifolds of order 2.

The aim of the present paper is to prove that every Riemannian s-manifold
M can carry another s’-structure {s;: x € M} such that M with {s,: x ¢ M} be-
comes a k-symmetric Riemannian space. The decomposition of a simply con-
nected Riemannijan s-manifold into simply connected irreducible Riemannian
s-manifolds is also studied. Finally, the problem of Riemannian s-manifolds is
reduced to the study of special Lie algebras.

2. We do not assume that the map s: M — I(M) is continuous. The point
x ¢ M for this symmetry s, is an isolated fixed point if and only if the ortho-
gonal transformation (s,),  on the tangent space 7 .(M) of M at x does not
have eigenvalue 1.

The following Theorem in known [6, p. 451].

Theorem 2.1. The group of all isometries (M) on a Riemannian s-mani-
fold M acts transitively on it.

From this theorem we conclude that the Riemannian s-manfold M is a
homogeneous space, which is M = I(M)/H, where H is the isotropy subgroup
of I(M) at any arbitrary point of M.

It can be easily proved, applying the same method as in [2], that the sub-
group G of I(M) generated by the symmetries of M acts transitively on M.
Therefore we can state the theorem.

Theorem 2.2. Let M be a Riemannian s-manifold. Then M = G|H, where
G is the closed subgroup of all symmetries of M, and H is the isotropy sub-
group of G at any point of M.

Let 5, be the symmetry at the point x € M. We can consider (ds,), as an
element of the orthogonal group O(n). Let f be a real-valued function on O(#)
defined by
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f:Om) =R, fi(ds);=4—-f4)=]4—-1IeR,

where I is the identity matrix. The function f is continuous. Since |(ds,).-:] #
0, we conclude that there exists a neighborhood of (ds.), whose all elements
do not have eigenvalue 1 and hence a neighborhood of s, containing only sym-
metries of M.

From the above we have the theorem.

Theorem 2.3. Let M — G/H be a Riemannian s-manifold. If s ¢ G, then
there is a neighborhood of s consisting only of symmetries of M.

Now we prove

Theorem 2.4. Let M be a connected Riemannian s-manifold. There exists
another s'-structure {s,: x ¢ M} on M such that M with {s},: x e M} becomes a
k-symmetric Riemannian space.

It is known that M = G/H, where G is the group of isometries. H is called
the origin of M and is denoted by 0. Let s, be the symmetry of M at 0. The
following relation holds: (dsy)e = ad (s,), where ad is the adjoint representa-
tion.

We assume that s, does not have finite order. It is possible to choose another
symmetry s, of finite order.

Let H® be the identity component of H. If s, € H’, then there is a maximal
torus T in H®, passing through s,. Therefore ad (s,) can be written as a matrix
in the form

[ cos 279,(¢)  sin 279,(2)
| —sin2z9,() cos 2z9(?) ]
ad (sy) = ’ . { s
t cos 2z:9,(f) sin 2E3L(t)J
—sin 2z9,() cos 2z9,(t)
where 9, - - -, 9, are homomorphisms of T into S = R/Z which induce real
linear forms a;: L(T) — R, where a;, i = 1, - - -, [, are called the roots of H

with respect to the torus 7. From the above we obtain the following commuta-
tive diagram

a;

L) > R
(-xv ctt xm) ai(-xn M xm) == bilxl + -+ bimxm
T 9 >S' = R/T
(xn ] xm): mod Z™ 19i(x17 ] xm)’ mod Z™

- bilxl +-- 4+ bimx'rm mod Z

where m is the rank of H, and b,,;,, ¢ Z, 1 <j <L 1 <j, < m.
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We assume that the symmetry s, has infinite order, which means that at
least one of the values 9;, 1 < i < [, is an irrational number. From this we
conclude that at least one of x;, 1 < j < m, is irrational. Therefore some, or
all of the m-tuple numbers (x,, - - -, x,,), to which the symmetry s, corresponds,
are irrational. We substitute these irrational numbers by rational ones as close
to them as we wish. Hence we obtain another symmetry s,, which has finite
order.

Now we assume that s, ¢ H°. Therefore there exists an integer 4 such that
s} € H. Since s, has infinite order, equally so does s3. Let T, be the maximal
torus in H® passing through s}.

The symmetry s, can be considered as an orthogonal matrix. Therefore
another orthogonal matrix 3 exists such that

cos 2z, sin 2zt
—sin 277, cos 2xr,

‘850‘8—1 = )
cos 2zz,, sin2zxr,,
—sin 2z7, cos 2z,
where at least one of the numbers z,, - - -, r,, 1s irrational. From the above we
obtain
cos 2xAr, sin 2rmir; )
—sin 2z, cos 2xwir, |
Bsop~ =

cos 2xit, Sin2xit,
—sin 272z, C€OS 2mAr,,

Since s, € T,, there is another base such that s can be written

cos 2xizr; sin 27ir]
—sin 2xAz; con 27nlr]

SO = »
cos 2zir,, sin2zit),
—sin 2rd7,, coOs 2xlch,
where at least two of the numbers (1, 2z1, - - -, Az%,) are linearly independent

of the field of rational numbers. Therefore s} generates at least one-dimensional
torus 77 C T, and closure {sj®, m > n,} = T7 and the elements of 77 commute
with s,.

From the above we conclude that there exists an element @ ¢ 7, which can
be written
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cos 2a(p] — 1) sin 2z(p] — 7))
—sin 2z(p; — ) cos 2z(p, — 7

o = ’
cos 2n(pl, — 1) sin2z(pl, — tl)
—sin 22(p}, — 74)  cos 2a(p}, — 7))
where py, - - -, p,, are rational numbers close to ¢, - - -, z},, as we wish, respec-

tively, and p; = ¢}, if ¢} is rational.
The same element « with respect to the old base can be written

{ cos 2z(p, — 7)) sin2a(p, — 7))
—sin 2n(p, — ;) cos 2x(p, — ,) ]

fap™ =

o8 27(pm — ) SN 27(p, — rm)J
—sin 27(pn, — 7,) €08 27(Pp — Tw)

Since « and s, commute, we obtain

cos 2zp, sin 2zxp,
|, —sin 2zp, cos 2zap,

asof ™ = g Bsof = | S ,
t cos 2xp,, Sin2zp,,
—sin 2zp,, cos2zmp,,

where p,;, i = 1, - - -, m, have the same meaning as p].

Therefore the symmetry as, belongs to the same component of H as the
given symmetry s,, having finite order.

Proposition 2.5. Let M = G/H be a compact Riemannian s-manifold. The
symmeltry S, belongs to the identity component H® of H if and only if rank G
= rank H.

We assume that the symmetry s, belongs to H°. From s, we obtain an auto-
morphism 4 on G:

A: G- G, A:v— AW) = sovs5t,
and an automorphism « on the Lie algebra g of G:
aig=h+m—-g=h+m, a:X—-aX)eh, vXeh.

Let T, T, be the maximal tori of H and G, respectively, through the ele-
ment 5,. Since T, C T, and all the elements of T, commute with s,, so do the
elements of T,. Since the vectors belonging to the tangent space of T, at the
identity element are invariant by «, we conclude that T, € H and therefore
rank G = rank H.
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The inverse is an immediate consequence of the assumption rank G =
rank H ; then we have that s, ¢ H°.

Corollary 2.6. Let M = G/H be a Riemannian homogeneous space such
that H is the largest isotropy subgroup of G at one point of M. If H is con-
nected and dim H is odd, then M can never be a Riemannian s-manifold.

If we assume that M is a Riemannian s-manifold, then s, ¢ H and there is
always a maximal torus T in H through s,. However since dim M is odd we
obtain ad (s,) having an eigenvalue 1. So we reach to a contradiction because
ad (so) never has an eigenvalue 1. Therefore M can not be a Riemannian s-
manifold.

Remark 2.7. From the above we conclude that all Riemannian s-manifolds
form a proper subset of all Riemannian homogeneous spaces.

3. Let M = G/H be a simply connected homogeneous space. It is known
that M is isometric to the direct product M, X M, X --.- X M, and that the
identity component I°(M) of the group of isometries /(M) is naturally isomor-
phic to the group I°(M,) X I°(M,) X --. X I%(M,).

We shall prove that each of the homogeneous spaces M, M,, ---, M, is a
Riemannian s-manifold. To this aim we distinguish two cases.

(1) If s e I(M), then we have

SIM=M XM X -+ XM,-M=M,XMX- --- XM,,
S:OZ(OO,OI,~--,0,.)—>0=(00,01,---,0,.),

Six = (xo,xv "',xr)_’s(x) = (yo,}"v "‘ayv') P

where y;, = s;(x;) = p,;(s(x)), p; is the natural projection of M into M;, and s,
is an isometry of M, [4, p. 241].

By considering the de Rham decomposition theorem for the tangent space of
M at 0, we have

(3.1 T(M) = TPM) @ TPM) @ -+ ©TM) .

Since s € I°'(M), we have ad (s)(T{?(M)) = T{O(M), where { =0,1, -.-,r
or ad (s )(T{P(M)) = TPM) = ad (s)(TyM)), [4, p. 240]. We also have s,:
M; — M,;, s;: 0, — 0, and hence s; is symmetry at 0, for the manifold M,.
Therefore M;,i = 0,1, -- -, r, is a Riemannian s-manifold. The order of s is
the least common multiple of the integers {k,, k;, - - -, k,} where &k;,{ = 0, 1,

-+, r, is the order of s,.

(i) If s ¢ I%(M), then we obtain an orbit (M3, Mz, - - ., M?) of the permuta-
tion group defined by s, and consider the product

M(i)=M1><M§>< XM,”.

If r, > 1, then we can order M;, M2, - -+, M%: such that s maps M} isometrical-
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ly onto M}**, where 1 < 2 < r; — 1, and M7 isometrically onto M;. This can
always be done after some identifications. Therefore M be written

M=M,XMsyX. +XM,,

where M, is the Euclidean part of M and M ;,,i = 1, - - -, gz, have the above
meaning.

With the same technique, as in case (i), we can prove that s can be written
s = (Y Yy, ++ =5 4,), where Wy, i =1, - - -, 4, is a symmetry on the manifold
M, having also the following properties

‘!’z:Mifox v XMZ‘—)M%XM%X"' XMZia
(32) ‘,b'z (01: 029 Tt Or,;) - (01: 02: tt s Ou) ’

(3.3) Wit (M} X0, -+ X0,) >0 XM x - X0,),

Pt (0 X 0 X -+« X 0, X M1 X 0,)

3.4)
'—>(01><02X see X 07.5._1 XM?):

(3.5) i (0, X 0y X v+ X Opy X MI) — (M2 X 0, X - X 0,) .

We can identify the manifold M} with M%, - - -, M7t by virtue of the follow-
ing mappings

fv:M%HM;?: v=2>"':ri:

where f, = pP o, fy = fop® oy o+ s fry = fria0 -0 frop{T oy, and
&, -« ., p{™¥ are the natural projections of M,,, into M3, - - -, M7+, respective-
ly.
The mapping, defined by (3.5), can be considered as an isometry of M7* onto
M; after the following identification

fi: M; — M;, fl=fn°fn-1°"'szopvsl)o‘abi,

where p{” is the natural projection of M ,, into M;. From the construction of
f, we conclude that f, has 0, as a fixed point,

Let T, (M ;) be the tangent space of M, at the point 0’ = (0, 0,, - -+, 0,).
Then we have

TO’(M('i)) = Té})(Mu») @ TS?)(M@)) ®--D Téfm(Mm) s

and ad (y,) has the properties :
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ad () : Te(M ;) — Ti'(M ;) A=1.r,—1,
ad (y): T3 (M ) — TP M ,,)

from which we obtain ad () = 4, X 4, X --- X 4,,, where 4,,j=1, .-,
r;, are defined as follows

A#: Te(M ;) — T (M) p=1-r—1,
A, THM ) — T (M) .

We assume that the mapping f, is not a symmetry for the point 0, of M;.
Therefore there is a vector u, ¢ T5.(M ;) = T,,(M¢;)) which is invariant under
d(f,),, = ad (f,). From this vector we obtain the following sequence of vectors :
u, = ad (fHu) € To.(My,), + -+, Upyer = ad (f,,_Du,,_2) € T (M), U, =
ad (f,)(u,,) € T(M), ad (F)(u,) = u; € Th(M,,). Hence ad (¥, by the
form of a matrix, can be written

(0 4, 0 0 0 ]
}0 0 4,.-- 0 0 |
B=i0 0 0 -d,, 0 |
0 0 0 ... 0 A,
[AH 0 0 0 0

Let u be the vector of T,(M,) with coordinates u,, u,, - - -, u,,. Then we
have

0 0o ...
0 A4, A,--- 0 u, {Aluz u,
. . . . —_— :u.

( 4, 0 ”1] (Aru [ )
kE H
- |

(3.6) Bu = s : | :
0 0---4,,_; : ’ :
[AM 0..- 0 J [u'fi [Ari—luTiJ [u'fz

From (3.6) we conclude that ad (y-,) leaves the vector u fixed, and there-
fore +, is not a symmetry. But this is not true because v, is a symmetry.
Therefore f, is a symmetry.

The order of the k-symmetric Riemannian space M is the least common
multiple of the orders k,, &y, ---,k, of the manifolds M, M, ---, M,
respectively. Each order &k,,i = 0, 1, - - -, z, has the form r,q, where g is the
least common multiple of (rank (4,), - - -, rank (4,,)). Hence we have

Theorem 3.1. Let M be a simply connected Riemannian s-manifold. This
manifold splits into the product manifolds M, X M, X - .. X M, each of which
is a simply connected, irreducible Riemannian s-manifold.

4. Let M = G/H be a k-symmetric Riemannian space, and s, the sym-

(=]
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metry of M at its origin 0. From this symmetry s, we obtain an automorphism
A on G defined by

A:G—- G, A:v— AW) = spvs;t .

Proposition 4.1. Let M = G/H be a k-symmetric Riemannian space.
Then the automorphism A on G has order k and preserves the isotropy sub-
group H. ;

From the definition of 4 we have

A:G—-G, A:v— AW) = squsyt,
Az 5ovs5t — A(sovsyh) = 80500855t = s3v(s5Y)?

A si(se) Tt — A (o)) — shu(sp)E = v

Thus we conclude that A% = id., that is, 4 has order k. If e H, then we
obtain A(y) = sousz*. It is known that sg .t M > M, p: M —> M, s5*: M — M,
50:0—=50(0) =0, 4:0— p0) =0, 5;": 00— 53%(0) =0, from which we
obtain syus;' € H, that is, A preserves H.

Definition 4.2. The triplet (G, H, A) is called a k-symmetric Lie group,
where G is a Lie group, H is a closed subgroup of G, and A is an automor-
phism on G of order £ with the property A(H) C H.

Let M = G/H be a k-symmetric Riemannian space. We consider the Lie
algebras g, 4 of G and H, respectively. Then we have

g=h+m,

where m can be identified with the tangent space T((M) of M at its origin 0.
From s, we can also obtain an automorphism « on g defined as follows :

a:g=h+m-—-g=h+m, a: X — a(X) = Ad (sg)X ,
where Ad (s,) = ad, (sy). The following is also known:
exp:g— G, exp: X —exp X,
“4.1) exp {Ad (50)X} = 5o exp X5 .

Proposition 4.3. Let M = G/H be a k-symmetric Riemannian space, a
the automorphism on g = h + m obtained by s,. Then h is preserved by «,
which has order k.

If X ¢ h, then exp X = 2¢ H. Since 2 ¢ H, we have s,45;" ¢ H, which im-
plies s, exp Xs;' € H. From this and (4.1) we obtain

exp {Ad (sp)(X)} = spexp Xsp' e H
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which gives Ad (so)(X) ¢ h. Therefore 4 is preserved by o = Ad (sy).
From the definition of o and formula (4.1) we have

a:g—8, aX—aX) =aX)=AdE)X),
exp {Ad (sp)(X)} = s, exp X3,
a: Ad (50)(X) — Ad (50){Ad (5o )(X)} = Ad® (50)X ,
exp {Ad® (50)(X)} = so{exp ((Ad (soD(X)}s5 = so{so exp Xs5')s51
= st exp X(s5) ,

which imply
exp {Ad* (so)(X)} = 5§ exp X(s5D% ,

showing that « = Ad (s,) has order k.

Definition 4.4. The triplet (g, 4, @) is called a k-symmetric Lie algebra,
where g is a Lie algebra, & is a Lie subalgebra of g, and « is an automorphism
on g of order £ with the property a{h) C 4.

Let M = G/H be a k-symmetric Riemannian space. If g and 4 are the Lie
algebras of G and H, respectively, then we have

g=h+m, alh) S h,

where « is the automorphism on g of order k, and m = g/A. It is known that
the Riemannian metric g on M is G-invariant, which gives an Ad (H)-invari-
ant nondegenerate symmetric bilinear form B on m = g/k defined by

B(X,Y)=§(X,Y), X,Yeg,

where X, Y are the elements of g/ represented by X, Y, respectively.

From the above we conclude that given a k-symmetric Riemannian space
we then have a k-symmetric Lie group (G, H, A), a k-symmetric Lie algebra
(g, h, ), and an Ad (H)-invariant nondegenerate symmetric bilinear form on
m=g/h.

Definition 4.5. Let M = G/H be a k-symmetric Riemannian space. If the
symmetry s, commutes with all the elements of H, then M is called a regular
k-symmetric Riemannian space or regular Riemannian s-manifold of order k.

If a k-symmetric Riemannian manifold M — G/H is regular, then the auto-
morphism A on G preserves the subgroup H as pointwise so that A(v) = 2,
vv € H. The same is true of the automorphism « on the Lic algebra g of G
which preserves the Lie algebra /4 of H pointwise so that a(X) = X, vX ¢ A.

The triplets (G, H, A) and (g, &, @), which are obtained by a regular k-sym-
metric Riemannian space, are called a regular k-symmetric Lie group and a
regular k-symmetric Lie algebra, respectively.
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Theorem 4.6. Let M = G/H be a regular Riemannian s-manifold. Then
M is a reductive homogeneous space.

Let g and A be the Lie algebras of G and H respectively. Then we have
g = h + m, where m can be identified with the tangent space of M at its ori-
gin.

1f ad (H)m C m, then M is a reductive homogenous space. We assume that
there exist X e m and 3 ¢ H such that ad (8}(X) = Y < A. Since ad (8) - ad (s,)
=ad (50) o ad (8), we have ad (8) - ad (s0)(X) = ad (s¢) o ad (8)(X), which im-
plies ad (8)(Z) = Y, where Z = ad (s5,)(X) e m. From ad? (s5,)(X) = X and
the fact that ad () is an automorphism, we conclude that Z = X and hence
X = ad (s54)X which is impossible because s, is a symmetry. Hence we have
reached a contradiction to our assumption. This implies ad (8)(m) C m.

Theorem 4.7. Let (G,H, A) be a regular k-symmetric Lie group. Then
there is a Riemannian metric on the homogeneous space M = G [H, which
makes M a regular k-symmetric Riemannian space.

First, we shall construct for each point P of M = G/H a diffeomorphism
sp of order k on M, having P as an isolated fixed point. For the origin O of
M we have the diffeomorphism s, defined as follows:

So: M =G/H—-M=G/H, So: VH — so(vH) = AW)H .

Let v(0O) be a fixed point of s,, where v ¢ G. Then A(v) € vH. By putting
n = v'AW) e H, since v ¢ H we have ¢ = pd(p) = v'AW)A@W™ ) AXv) and
therefore ;2 = v7'4*w). But e H implies A(y) = 2. Thus @ =
AW HA®Y. Similarly, for r < k we obtain g~ = A(@ DA (v) and finally
pt = v AW)AW)A*(w) = id since 4% = id. Thus p* is the identity ele-
ment of H. Now assume that v is sufliciently close to the identity element so
that g is also near the identity element. Then y itself must be the identity ele-
ment and therefore A(v) = v. Being invariant by A and near the identity ele-
ment, v lies in the identity component of G, where G, is the setwise of G by
A and hence in H. Thus ¥(0) = 0O proving our assertion that O is an isolated
fixed point of s,.

For the point P = v(0) we obtain as a diffeomorphism s = vosyov7.
Then sp has P as an isolated fixed point, and its order is k. This is independ-
ent of the choice of ¥ such that P = »(0).

The Lie algebra g of G can be written in the known decomposition

g=h+m.

We consider a special ad (H)-invariant nondegenerate symmetric bilinear
form B on m. From B we obtain a G-invariant Riemannian metric g on M =
G /H, which is given by the formula B(X,Y) = g(X,Y) for X, Y e m. It can
be easily obtained that s is a Riemannian symmetry of order k on M at P.
Hence M = G/H is a regular k-symmetric Riemannian space.
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